Information and effect size under risk difference
Arguments
- p_c
rate at the control group
- p_e
rate at the experimental group
- N
sample size
- rd0
the risk difference under H0
- ratio
Experimental:Control randomization ratio
- weight
weigting method, either "un-stratified" or "ss" or "invar"
Examples
library(tibble)
# --------------------- #
# example 1 #
# --------------------- #
# un-stratified case with H0: rd0 = 0
gs_info_rd(
p_c = tibble(Stratum = "All", Rate = .15),
p_e = tibble(Stratum = "All", Rate = .1),
N = tibble(Stratum = "All", N = c(100, 200, 300), Analysis = 1:3),
rd0 = 0,
ratio = 1
)
#> # A tibble: 3 × 8
#> Analysis N rd rd0 theta1 theta0 info1 info0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 100 0.05 0 0.758 0 230. 229.
#> 2 2 200 0.05 0 1.07 0 460. 457.
#> 3 3 300 0.05 0 1.31 0 690. 686.
# --------------------- #
# example 2 #
# --------------------- #
# un-stratified case with H0: rd0 != 0
gs_info_rd(
p_c = tibble(Stratum = "All", Rate = .2),
p_e = tibble(Stratum = "All", Rate = .15),
N = tibble(Stratum = "All", N = c(100, 200, 300), Analysis = 1:3),
rd0 = 0.005,
ratio = 1
)
#> # A tibble: 3 × 8
#> Analysis N rd rd0 theta1 theta0 info1 info0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 100 0.05 0.005 0.659 0.0658 174. 173.
#> 2 2 200 0.05 0.005 0.933 0.0930 348. 346.
#> 3 3 300 0.05 0.005 1.14 0.114 522. 519.
# --------------------- #
# example 3 #
# --------------------- #
# stratified case under sample size weighting and H0: rd0 = 0
gs_info_rd(
p_c = tibble(Stratum = c("S1", "S2", "S3"), Rate = c(.15, .2, .25)),
p_e = tibble(Stratum = c("S1", "S2", "S3"), Rate = c(.1, .16, .19)),
N = tibble(Stratum = rep(c("S1", "S2", "S3"), each = 3),
Analysis = rep(1:3, 3),
N = c(50, 100, 200, 40, 80, 160, 60, 120, 240)),
rd0 = 0,
ratio = 1,
weight = "ss")
#> # A tibble: 3 × 8
#> Analysis N rd rd0 theta1 theta0 info1 info0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 150 0.0513 0 0.829 0 261. 260.
#> 2 2 300 0.0513 0 1.17 0 522. 519.
#> 3 3 600 0.0513 0 1.66 0 1043. 1038.
# --------------------- #
# example 4 #
# --------------------- #
# stratified case under inverse variance weighting and H0: rd0 = 0
gs_info_rd(
p_c = tibble(Stratum = c("S1", "S2", "S3"),
Rate = c(.15, .2, .25)),
p_e = tibble(Stratum = c("S1", "S2", "S3"),
Rate = c(.1, .16, .19)),
N = tibble(Stratum = rep(c("S1", "S2", "S3"), each = 3),
Analysis = rep(1:3, 3),
N = c(50, 100, 200, 40, 80, 160, 60, 120, 240)),
rd0 = 0,
ratio = 1,
weight = "invar")
#> # A tibble: 3 × 8
#> Analysis N rd rd0 theta1 theta0 info1 info0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 150 0.0507 0 0.835 0 271. 269.
#> 2 2 300 0.0507 0 1.18 0 542. 539.
#> 3 3 600 0.0507 0 1.67 0 1083. 1078.
# --------------------- #
# example 5 #
# --------------------- #
# stratified case under sample size weighting and H0: rd0 != 0
gs_info_rd(
p_c = tibble(Stratum = c("S1", "S2", "S3"),
Rate = c(.15, .2, .25)),
p_e = tibble(Stratum = c("S1", "S2", "S3"),
Rate = c(.1, .16, .19)),
N = tibble(Stratum = rep(c("S1", "S2", "S3"), each = 3),
Analysis = rep(1:3, 3),
N = c(50, 100, 200, 40, 80, 160, 60, 120, 240)),
rd0 = 0.02,
ratio = 1,
weight = "ss")
#> # A tibble: 3 × 8
#> Analysis N rd rd0 theta1 theta0 info1 info0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 150 0.0513 0.02 0.829 0.322 261. 260.
#> 2 2 300 0.0513 0.02 1.17 0.456 522. 519.
#> 3 3 600 0.0513 0.02 1.66 0.644 1043. 1038.
# --------------------- #
# example 6 #
# --------------------- #
# stratified case under inverse variance weighting and H0: rd0 != 0
gs_info_rd(
p_c = tibble(Stratum = c("S1", "S2", "S3"),
Rate = c(.15, .2, .25)),
p_e = tibble(Stratum = c("S1", "S2", "S3"),
Rate = c(.1, .16, .19)),
N = tibble(Stratum = rep(c("S1", "S2", "S3"), each = 3),
Analysis = rep(1:3, 3),
N = c(50, 100, 200, 40, 80, 160, 60, 120, 240)),
rd0 = 0.02,
ratio = 1,
weight = "invar")
#> # A tibble: 3 × 8
#> Analysis N rd rd0 theta1 theta0 info1 info0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 150 0.0507 0.02 0.835 0.328 271. 269.
#> 2 2 300 0.0507 0.02 1.18 0.464 542. 539.
#> 3 3 600 0.0507 0.02 1.67 0.657 1083. 1078.
# --------------------- #
# example 7 #
# --------------------- #
# stratified case under inverse variance weighting and H0: rd0 != 0 and
# rd0 difference for different statum
gs_info_rd(
p_c = tibble(Stratum = c("S1", "S2", "S3"),
Rate = c(.15, .2, .25)),
p_e = tibble(Stratum = c("S1", "S2", "S3"),
Rate = c(.1, .16, .19)),
N = tibble(Stratum = rep(c("S1", "S2", "S3"), each = 3),
Analysis = rep(1:3, 3),
N = c(50, 100, 200, 40, 80, 160, 60, 120, 240)),
rd0 = tibble(Stratum = c("S1", "S2", "S3"),
rd0 = c(0.01, 0.02, 0.03)),
ratio = 1,
weight = "invar")
#> # A tibble: 3 × 8
#> Analysis N rd rd0 theta1 theta0 info1 info0
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 150 0.0507 0.0190 0.835 0.312 271. 269.
#> 2 2 300 0.0507 0.0190 1.18 0.441 542. 539.
#> 3 3 600 0.0507 0.0190 1.67 0.624 1083. 1078.